27.04.2023 11:08 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей $ x^2 + y^2 = z^2 $Для нечётных икс, $ k $ нечётный: $ 1, 3, 5 ... $Для чётных икс, $ k $ чётный: $ 2, 4, 6 ... $Для каждого коэффициента, вычисляется каждая отдельная последовательность.$ y = (x^2 \divk – k) \div2 $$ z = ( x^2 \div k – k) \div 2 + k $Алгоритм для троек: задать любой икс, вычислить игрек и зет. Алгоритм для последовательностей длиннее троек: задать икс, и вычислить игрек. Вычисленная сумма в общий результат не входит, в последовательность НЕ рисуем, из неё вычисляем следующее слагаемое. И так далее, то есть – считать как тройки. Из крайней тройки, результат уже пишем, после знака «равно». Алгоритм для последовательностей, где первое слагаемое, вместо икса в квадрате – сумма последовательных натуральных квадратов, вида: $ 1^2 + 2^2 + 3^2 + 4^2 + .... + n^2 $Такая сумма квадратов – сама не является квадратом, и формально – не Пифагорово число. Но поскольку подчиняется тому же* алгоритму, то в формулах меняем икс в квадрате, на символ $ S $ : $ y = (S \div k – k) \div 2 $$ z = (S \div k – k) \div 2 + k $Далее, вычисления по алгоритму, что и для троек. Разумеется, посчитав вначале $ S $. Редактировалось 12 раз(а). Последний 30.04.2023 06:07.
|
28.04.2023 06:50 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей Дополнено. При подборе коэффициентов: если вычисленный игрек даёт не натуральное число, то считать зет уже не нужно, поскольку именно этой последовательности – не существует, значит надо подставлять следующий за ним коэффициент. Для любого значения икс, есть минимум одна последовательность.
|
29.04.2023 11:07 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей Дополнение 2 При вычислении последовательностей длиннее тройки, надо применять цепочку коэффициентов и к дополнительным суммам, из которых считаются последующие слагаемые, чтобы не потерять наборы. Вследствие выполнения такого ветвящегося алгоритма, получается весь сет. Например, для х = 12, всего для двух из четырёх штук коэффициентов для 144, (2, 4), уже выходит 11 Пифагоровых пятёрок. Редактировалось 1 раз(а). Последний 30.04.2023 06:55.
|
02.05.2023 16:02 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей Дополнение # Вычисления выражений, где первое слагаемое – сумма последовательных квадратов $ 1^2+2^2... n^2$, время от времени не генерирует натуральные результаты, например когда слагаемое: $ 1^2+2^2+3^2$; $ 1^2+2^2+3^2+4^2$ . и прочие. Но и в этих случаях, результат – квадрат суммы, хоть и не натуральный, алгоритм работает и для таких вариантов.
|
05.05.2023 07:44 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей Дополнение## Алгоритм и формулы, работают (т.е. – результат, это всегда квадрат), так же во всех случаях, когда первое слааемое, задано любым положительным числом.
|
15.05.2023 13:21 Дата регистрации: 1 год назад Посты: 277 | Алгоритм для всех Пифагоровых последовательностей Программа на паскале абс нет, генератор всех троекprogram WHILE_IF_Pythagorean_Triples_1; var x, k: integer; y, z: real; begin writeln('For x² + y² = z² – Enter X: '); readln(x); k:=0; while k <= sqr(x)/k do begin k := k + 1; if k <> 0 then y := (x*x/k - k)/2; z := y + k; if y <> 0 then if frac(y) = 0 then if k <= sqr(x)/k then println('Pythagorean Triple:',x,y,z); end; end.
|
16.05.2023 13:46 Дата регистрации: 3 года назад Посты: 2 445 | бегин. На Си напишите то же, посмотрю. На питоне не интересно, на Си лучше, так как на Си бегина точно нету, можно сразу писать код, не отвлекаясь на бегины.
|
16.05.2023 14:26 Дата регистрации: 1 год назад Посты: 277 | бегин. new Цитата alexx223344
На Си напишите то же, посмотрю. На питоне не интересно, на Си лучше, так как на Си бегина точно нету, можно сразу писать код, не отвлекаясь на бегины.
Я неделю как в программировании)) Какой-такой Си? Питоооон?!))) Серьёзно, я в коде <=0)))
|
17.05.2023 07:30 Дата регистрации: 15 лет назад Посты: 3 155 | хм Цитата alexx223344
На Си напишите то же, посмотрю. На питоне не интересно, на Си лучше, так как на Си бегина точно нету, можно сразу писать код, не отвлекаясь на бегины.
это старый добрый паскаль.
|
18.05.2023 16:41 Дата регистрации: 3 года назад Посты: 2 445 | ок Цитата 7alek7
Цитата alexx223344
На Си напишите то же, посмотрю. На питоне не интересно, на Си лучше, так как на Си бегина точно нету, можно сразу писать код, не отвлекаясь на бегины.
Я неделю как в программировании)) Какой-такой Си? Питоооон?!))) Серьёзно, я в коде <=0)))
Порекомендую по Си книшку - Харви Дейтел, лучше нету Как прочтете обсудим.
|