Заседание Московского математического общества 16 марта 2010 года

Автор темы Даниил Кальченко 
ОбъявленияПоследний пост
ОбъявлениеРекомендации по использованию теха в нашем форуме15.04.2017 21:40
ОбъявлениеПравила и принципы форума «Высшая математика»28.10.2009 15:17
ОбъявлениеPhD позиция (аспирантура) по математике в Мальмё, Швеция30.09.2017 22:10
12.03.2010 01:00
Заседание Московского математического общества 16 марта 2010 года
Во вторник, 16 марта 2010 года, в 18:30 в аудитории 16-24 Главного здания МГУ состоится заседание Московского математического общества: Обратные задачи в стохастической геометрии (по совместной работе с A. Louis, M. Riplinger, M. Spiess). Лектор – Е. Сподарев.

В докладе обсуждается ряд проблем, стоящих на стыке теории вероятностей и геометрии. Рассматриваются аналитические и компьютерные методы обращения преобразований, используемых в томографии. В стохастической геометрии эти преобразования характеризуют анизотропность пространственного стационарного процесса, порожденного случайными отрезками (учитывается количество пересечений подобных процессов с множествами, расположенными в данном направлении и имеющими определенные размеры). Исследуются конечные меры на грассмановских многообразиях.

Отдельное внимание уделяется задачам, связанным с выпуклой геометрией. Будет показано, как обращение обобщенного косинусоидального преобразования соотносится с обращением сферического преобразования Радона. Даются как интегральные формулы обращения упомянутых преобразований, так и формулы, использующие разложения функций по сферическим гармоникам. Кроме того, затрагиваются методы вычисления приближенных обратных преобразований для сферического преобразования Радона и косинусоидального преобразования.

Приводятся необходимые сведения из работ R. Gardner, W. Weil, P. Goodey, S. Helgason и др. Для понимания доклада не предполагается знакомство слушателей со специальной литературой.

Московское математическое общество
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти