# Заседание Математического семинара Глобус 22 апреля 2010 года

Автор темы Даниил Кальченко
 21.04.2010 01:53Даниил КальченкоAdminДата регистрации:18 лет назадПосты: 1 923 Заседание Математического семинара Глобус 22 апреля 2010 годаВ четверг, 22 апреля 2010 года, в 15:40 в конференц-зале НМУ, Б. Власьевский 11, состоится доклад «On beauville surfaces and the genus of the curves arising in their construction». Докладчик – Gabino Gonzalez-Diez (Universidad Autonoma de Madrid).A (unmixed) Beauville surface is a complex surface of the form $S=(C_1\times C_2)/G$ where $C_1$ and $C_2$ are complex curves of genus $\geq 2$ and $G$ is a finite group acting freely on the product $C1\times C2$ in such a way that each of the factors is preserved by the action and, moreover, the quotient $C_i/G$ is an orbifold of genus zero with three cone points. Beauville surfaces were introduced by Catanese following an initial construction of Beauville (of a surface of general type with invariants $p_g=q=0$) in which $C_1=C_2$ is the Fermat curve $X_0^5+X_1^5+X_2^5=0$ and $G\simeq\mathbb{Z}/5\mathbb{Z}\times\mathbb{Z}/5\mathbb{Z}$.Striking properties of Beauville surfaces are 1) despite of being of general type they are rigid and 2) the curves $C_i$ and the group $G$ are determined by $S$. (For instance these two properties imply that these surfaces tend to possess Galois conjugates non homeomorphic to themselves)In this talk I shall discuss questions such as which groups $G$ and which genera $g_1\leq g_2$ of $C1, C2$ can arise in the construction of Beauville surfaces. In particular I will show that $g_1$ and $g_2$ have to be $\geq 6$ and that if $g_1=6$ then $S$ agrees with (one of the two) Beauville examples above. The proof of this fact will rely on methods belonging to the theory of Riemann surfaces.Математический семинар Глобус
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти