Во вторник, 23 ноября 2010 года, в 18:30 в аудитории 16-24 Главного здания МГУ состоится заседание Московского математического общества: Эргодические интегралы потока орициклов. Лектор – А. И. Буфетов.
Пусть
$Г$ – дискретная группа изометрий плоскости Лобачевского. Пространство орбит группы Г есть поверхность постоянной отрицательной кривизны, на единичном касательном расслоении которой определены три потока: геодезический и два орициклических. Все три потока сохраняют меру Лебега (фазовый объем).
Обратимся к случаю, когда наша поверхность компактна. По теореме Фюрстенберга (1973 года) орициклический поток строго эргодичен: мера Лебега есть единственная инвариантная вероятностная мера. Из эргодической теоремы вытекает теперь, что средние непрерывной функции вдоль орициклов равномерно сходятся к среднему функции по фазовому пространству.
Какова скорость сходимости? В совместной работе докладчика с Giovanni Forni найдена асимптотика временных интегралов и получены предельные теоремы для потока орициклов на компактной поверхности. Изложению этой работы и посвящен доклад. Специальных знаний для понимания доклада не требуется.
Московское математическое общество