Заседание Московского математического общества 27 сентября 2011 года

Автор темы Даниил Кальченко 
ОбъявленияПоследний пост
ОбъявлениеЗапущен новый раздел «Задачки и головоломки»29.08.2019 00:42
ОбъявлениеОткрыта свободная публикация вакансий для математиков26.09.2019 16:34
ОбъявлениеВыпускник мехмата МГУ Алекс Герко стал крупнейшим налогоплательщиком Великобритании29.01.2023 00:21
22.09.2011 00:22
Заседание Московского математического общества 27 сентября 2011 года
Во вторник, 27 сентября 2011 года, в 18:30 в аудитории 16-10 Главного здания МГУ пройдет заседание Московского математического общества: Многочлены Сабитова для объемов четырехмерных многогранников. Лектор – А. Гайфуллин.

Классическая формула Герона выражает площадь треугольника через длины его сторон. Очевидно, что для многоугольников с большим количеством сторон не существует формулы такого типа, так как площадь многоугольника может меняться непрерывно при его изгибании с сохранением длин сторон. Оказывается, что ситуация кардинальным образом изменяется при переходе к размерности 3.

В 1996 году И. Х. Сабитов доказал, что объем любого симплициального многогранника в трехмерном евклидовом пространстве является корнем некоторого отмеченного многочлена, зависящего от комбинаторного типа многогранника, с коэффициентами, полиномиально зависящими от длин ребер многогранника. Подчеркнем, что многогранник не предполагается ни выпуклым, ни даже гомеоморфным шару.

Одним из основных приложений этого результата является доказательство так называемой «гипотезы о кузнечных мехах», утверждающей, что объем любого изгибаемого многогранника в трехмерном евклидовом пространстве постоянен. С тех пор, как были получены эти результаты, оставался открытым вопрос о возможности их обобщения на многогранники старших размерностей.

В докладе будет рассказано о недавно полученных докладчиком аналогах теорем Сабитова для многогранников в четырехмерном евклидовом пространстве. Будет доказано, что для любого четырехмерного симплициального многогранника существует многочлен Сабитова и что объем любого изгибаемого четырехмерного многогранника постоянен.

Московское математическое общество
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти