Заседание Московского математического общества 15 ноября 2011 года

Автор темы Даниил Кальченко 
ОбъявленияПоследний пост
ОбъявлениеРаботодателям и кадровым агентствам: Размещение вакансий и рекламы в форуме26.03.2008 03:07
ОбъявлениеПравила и принципы форума «Высшая математика»28.10.2009 15:17
ОбъявлениеВычисление параметров смешанной модели15.11.2017 16:57
12.11.2011 13:34
Заседание Московского математического общества 15 ноября 2011 года
Во вторник, 15 ноября 2011 года, в 18:30 в аудитории 16-10 Главного здания МГУ пройдет заседание Московского математического общества: Супергеометрия и скобки. Лектор – Ф. Ф. Воронов.

В докладе рассматривается связь геометрических структур на супермногообразиях, таких, как гомологические векторные поля, со скобками Пуассона, алгебрами Ли и их обобщениями (гомотопические алгебры Ли и алгеброиды Ли). Все необходимые понятия будут введены по ходу изложения и предварительное знакомство с ними не предполагается.

В первой части доклада мы покажем, как при описании дифференциально-геометрических объектов на обычном многообразии естественно возникают супермногообразия. Введение супермногообразий имеет здесь такое же преимущество, как переход от компонентной записи уравнений Максвелла к инвариантному языку векторного и тензорного анализа. Эта аналогия не случайна: в современной математической физике супергеометрия является стандартным языком, удачно дополнившим классические тензорные обозначения. Потом мы определим «гомологические векторные поля» на супермногообразии. Это понятие обладает большой унифицирующей силой: гомологические векторные поля играют роль производящих функций разнообразных алгебраических и дифференциально-геометрических объектов.

Примером служат обычные алгебры Ли, для которых на языке гомологических векторных полей легко и просто возникают полезные обобщения, такие как «сильно-гомотопические алгебры Ли» и алгеброиды Ли. Алгеброиды Ли являются инфинитезимальным объектом для группоидов Ли. Они описывают симметрии более общей, чем групповая, природы. Фундаментальное значение группоидов Ли в дифференциальной геометрии подчеркивалось Эресманном в 1950-е годы, а современное развитие связало алгеброиды Ли с супермногообразиями.

Более подробно об алгеброидах Ли и родственных им объектах будет рассказано во второй части доклада. Мы расскажем о «неабелевой формуле цепной гомотопии» и «неабелевом» аналоге леммы Пуанкаре, частными случаями которого являются обычная лемма Пуанкаре для замкнутых форм и утверждение, что «связность нулевой кривизны есть чистая калибровка». Из «неабелевой леммы Пуанкаре», в частности, легко получаются классические результаты Маккензи по интегрированию транзитивных алгеброидов Ли. Мы обсудим это, а также любопытные «нелинейные» аналоги алгебр(оидов) Ли, возникающие из градуированной геометрии, т.е., теории супермногообразий, снабженных дополнительной $Z$-градуировкой («весом»).

Московское математическое общество
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти