Продам: Серия "Математика в техническом университете"

Автор темы elixer 
ОбъявленияПоследний пост
ОбъявлениеРаботодателям и кадровым агентствам: Размещение вакансий26.03.2008 03:07
ОбъявлениеПравила и принципы форума «Высшая математика»28.10.2009 15:17
ОбъявлениеАктуарий в PPF Life Insurance (Junior)25.03.2021 21:35
08.01.2012 21:51
Продам: Серия "Математика в техническом университете"
Серия не полная. Все книги новые!

I. Введение в анализ

Морозова В.Д. Введение в анализ: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. -408 с. (Сер. Математика в техническом университете; Вып. I).
Книга является первым выпуском учебного комплекса „Математика в техническом университете", состоящего из двадцати одного выпусков. Знакомит читателя с понятиями функции, предела, непрерывности, которые являются основополагающими в математическом анализе и необходимыми на начальном этапе подготовки студента технического университета. Отражена тесная связь классического математического анализа с разделами современной математики (прежде всего, с теорией множеств непрерывных отображений в метрических пространствах).
Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.

II. Дифференциальное исчисление функций одного переменного

Иванова Е.Е. Дифференциальное исчисление функций одного переменного: Учеб. для вузов / Под ред. В.С.Зарубина, А.П.Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1998.- 408 с. (Сер. Математика в техническом университете; Вып. II).
Книга является вторым выпуском комплекса учебников „Математика в техническом университете". Знакомит читателя с понятиями производной и дифференциала, с их использованием при исследовании функций одного переменного. Большое внимание уделено геометрическим приложениям дифференциального исчисления и его применению к решению нелинейных уравнений, интерполированию и численному дифференцированию функций. Приведены примеры и задачи физического, механического и технического содержания.
Содержание учебника соответствует курсу лекций, который автор читает в МГТУ им. Н.Э. Баумана. Для студентов технических вузов. Может быть полезна преподавателям и аспирантам.

III. Аналитическая геометрия

Канатников А.Н., Крищенко А.П. Аналитическая геометрия. -2-е изд. - М., Изд-во МГТУ им. Баумана, 2000, 388 с (Сер.Математика в техническом университете; Вып. III.)
Книга знакомит с основными понятиями векторной алгебры и ее приложений, теории матриц и определителей, систем линейных уравнений, кривых и поверхностей второго порядка.
Материал изложен в объеме, необходимом на начальном этапе подготовки студента технического университета.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э.Баумана.

IV. Линейная алгебра

Канатников А.Н., Крищенко А.П. Линейная алгебра: Учеб. для вузов. 3-е изд., стереотип. / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 336 с. (Сер. Математика в техническом университете; Вып. IV).
Описание: Книга является четвертым выпуском серии „Математика в техническом университете" и содержит изложение базового курса по линейной алгебре. Дополнительно включены основные понятия тензорной алгебры и итерационные методы численного решения систем линейных алгебраических уравнений. Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.

V. Дифференциальное исчисление функций многих переменных

А.Н. Канатников, А.П. Крищенко, В.Н. Четвериков. Дифференциальное исчисление функций многих переменных: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. - 456 с. (Сер. Математика в техническом университете; Вып. V).
В пятом выпуске подробно рассмотрены основополагающие понятия предела и непрерывности функций многих переменных, свойства дифференцируемых функций, вопросы поиска абсолютного и условного экстремумов функций многих переменных. Отражена связь дифференциального исчисления функций многих переменных с дифференциальной геометрией. Рассмотрены методы решения систем нелинейных уравнений.
Теоретический материал изложен с применением методов линейной и матричной алгебры и иллюстрирован раэбором примеров и задач. В конце каждой главы приведены вопросы и задачи для самостоятельного решения.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

VI. Интегральное исчисление функций одного переменного

Зарубин B.C., Иванова Е.Е., Кувыркин Г.Н. Интегральное исчисление функций одного переменного: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во
МГТУ им. Н.Э. Баумана, 1999. - 528 с. (Сер. Математика в техническом университете; Вып. VI).
Книга является шестым выпуском комплекса учебников "Математика в техническом университете". Знакомит читателя с понятиями неопределенного и определенного интегралов и методами их вычисления. Уделено внимание приложениям определенного интеграла, приведены примеры и задачи физического, механического и технического содержания.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических вузов. Может быть полезен преподавателям и аспирантам.


VII. Кратные и криволинейные интегралы. Элементы теории поля

Гаврилов В.Р., Иванова Б.Б., Морозова В.Д. Кратные и криволинейные интегралы. Элементы теории поля: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 2-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. -496 с. (Сер. Математика в техническом университете; Вып. VII).
Книга является седьмым выпуском комплекса учебников „Математика в техническом университете". Она знакомит читателя с кратными, криволинейными и поверхностными интегралами и с методами их вычисления. В ней уделено внимание приложениям этих типов интегралов, приведены примеры физического, механического и технического содержания. В заключительных главах изложены элементы теории поля и векторного анализа.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.


VIII. Дифференциальные уравнения

С.А. Агафонов, А.Д. Герман, Т.В. Муратова Дифференциальные уравнения. - МГТУ им. Н.Э. Баумана, 2004. -348 с. - (Математика в техническом университете)
Изложены основы теории обыкновенных дифференциальных уравнений (ОДУ) и даны основные понятия об уравнениях с частными производными первого порядка. Приведены многочисленные примеры из механики и физики. Отдельная глава посвящена линейным ОДУ второго порядка, к которым приводят многие прикладные задачи. Содержание учебника соответствует курсу лекций, которые авторы читают в МГТУ Им. Н. Э. Баумана. Для студентов технических университетов и вузов. Может быть полезен интересующимся прикладными задачами теории дифференциальных уравнений.

IX. Ряды

Власова Е.А. Ряды: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 616 с. (Сер. Математика в техническом университете; Вып. IX). ISBN 5-7038-2884-8
Книга знакомит читателя с основными понятиями теории числовых и функциональных рядов. В книге представлены степенные ряды, ряды Тейлора, тригонометрические ряды Фурье и их приложения, а также интегралы Фурье. Изложена теория рядов в банаховых и гильбертовых пространствах, и в объеме, необходимом для ее изучения, рассмотрены вопросы функционального анализа, теории меры и интеграла Лебега. Теоретический материал сопровождается подробно разобранными примерами, рисунками и большим количеством задач разного уровня сложности.
Для студентов технических университетов. Учебник может быть полезен преподавателям и аспирантам.

X. Теория функций комплексного переменного

Морозова В.Д. Теория функций комплексного переменного: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. - 520 с. (Сер. Математика в техническом университете; Вып. X.) ISBN 978-5-7038-3189-2
Книга посвящена теории функций одного комплексного переменного. В ней уделено внимание вопросам, связанным с конформными отображениями, а также применению теории к решению прикладных задач. Приведены примеры и задачи из физики, механики и разных отраслей техники.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

XII. Дифференциальные уравнения математической физики

Мартинсон Л.К., Малов Ю.И. Дифференциальные уравнения математической физики: Учеб. для вузов. 2-е изд. / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 368 с. (Сер. Математика в техническом университете; Вып. XII).
Рассмотрены различные постановки задач математической физики для дифференциальных уравнений в частных производных и основные аналитические методы их решения, проанализированы свойства полученных решений. Изложено большое число линейных и нелинейных задач, к решению которых приводит исследование математических моделей различных процессов в физике, химии, биологии, экологии и др.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

XIII. Приближенные методы математической физики

Власова Е.А., Зарубин B.C., Кувыркин Г.Н. Приближенные методы математической физики: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. -700 с. (Сер. Математика в техническом университете; Вып. XIII).
Книга является тринадцатым выпуском серии учебников „Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.


XV. Вариационное исчисление и оптимальное управление

Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариационное исчисление и оптимальное управление: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., исправл. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. -488 с. (Сер. Математика в техническом университете; Вып. XV).
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. Учебник завершают примеры из физики, механики и техники, в которых показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.

XVIII. Случайные процессы

Волков И.К., Зуев СМ., Цветкова Г.М. Случайные процессы: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 1999. -448 с. (Сер. Математика в техническом университете; Вып. XVIII).
Книга является восемнадцатым выпуском учебного комплекса „Математика в техническом университете" и знакомит читателя с основными понятиями теории случайных процессов и некоторыми из ее многочисленных приложении. По замыслу авторов, данный учебник должен явиться связующим звеном между строгими математическими исследованиями, с одной стороны, и практическими задачами — с другой. Он должен помочь читателю овладеть прикладными методами теории случайных процессов.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.

XIX. Дискретная математика

Белоусов А.И., Ткачев СБ. Дискретная математика: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 3-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. -744 с. (Сер. Математика в техническом университете; Вып. XIX).
В девятнадцатом выпуске серии „Математика в техническом университете" изложены теория множеств и отношений, элементы современной абстрактной алгебры, теория графов, классические понятия теории булевых функций, а также основы теории формальных языков, куда включены теории конечных автоматов, регулярных языков, контекстно-свободных языков и магазинных автоматов. В анализе графов и автоматов особое внимание уделено алгебраическим методам.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.


XXI. Математическое моделирование в технике


Зарубин B.C. Математическое моделирование в технике: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. - 2-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. -496 с. (Сер. Математика в техническом университете; Вып. XXI, заключительный).
Книга является дополнительным, двадцать первым выпуском комплекса учебников „Математика в техническом университете", завершающим издание серии. Она посвящена применению математики к решению прикладных задач, возникающих в различных областях техники. В нее включен предметный указатель ко всему комплексу учебников. Содержание учебника соответствует курсу „Основы математического моделирования", читаемому автором в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

ИЗДАНИЯ МОГУТ ОТЛИЧАТЬСЯ ОТ ПРЕДСТАВЛЕННЫХ ВЫШЕ. БОЛЬШИНСТВО ВЫПУСКОВ БОЛЕЕ НОВОГО ИЗДАНИЯ, С ИСПРАВЛЕНИЯМИ.
ВЕСЬ ЛОТ ПРОДАЕТСЯ ЗА 2500Р



Редактировалось 2 раз(а). Последний 22.01.2012 02:40.
Извините, только зарегистрированные пользователи могут публиковать сообщения в этом форуме.

Кликните здесь, чтобы войти